Daniel Faggella
Daniel Faggella is Head of Research at Emerj. Called upon by the United Nations, World Bank, INTERPOL, and leading enterprises, Daniel is a globally sought-after expert on the competitive strategy implications of AI for business and government leaders.
Articles by Steve
30 articles
The internet is really, really great
For porn-
I've got a fast connection, so I don't have to wait
For porn-
There's always some new site,
For porn!
I browse all day and night,
For porn!
It's like I'm surfing at the speed of light,
For porn!
Many of today's most popular digital products — from video games to social media and beyond — owe their popularity (and profitability) directly to their addictive potential.
Episode summary: In this episode, we speak with Alan O'Herlihy, Founder and CEO of Ireland-based Everseen. Alan speaks to us about how machine vision systems can be used to detect theft or mistakes at a checkout counter (including forgetting to scan items, customers intentionally hiding items, and more). Alan not only explains where these technologies are in use today, but he also breaks down some of his own predictions about what these computer vision systems might make possible in the workplace of tomorrow.
When Facebook bought Oculus in 2014 for over a billion dollars, it was an investment ahead of its time. For years virtual reality remained an interesting novelty and little more.
Almost no other sector is traditionally slower to technological adoption than manufacturing, in no small part due to the countless challenges of relying on data accrued from physical environments. Yet across industries, manufacturing business leaders are finding that data is finally “waking up” to the nuances and fundamentals of their business operations.
DocuSign is an American company that provides digitized document management services. The company’s target market are companies who need help managing electronic business agreements.
Meta Platforms Inc. (herein, “Meta”), was known as Facebook up until 2021. Mark Zuckerberg states that the new brand embodies his strategic plan to create a “metaverse” for its customers using AI and VR technology.
NVIDIA is a multinational company known for its computing hardware, especially its graphics processing units (GPUs) and systems on chip units (SoCs) for mobile devices. The company went public on January 22, 1999.
You don’t want the brand new shiny red sports car.
Or that all-inclusive resort vacation to Hawaii.
Intel was founded in 1968 by Robert Noyce and Gordon Moore, who had previously been among the founders of Fairchild Semiconductors. Today, Intel employs over 121,000 people worldwide. In its 2021 annual report, the company reported revenues of $79 billion. As of 2022, Intel trades on the Nasdaq (Symbol: INTC) with a market cap that exceeds $178 billion.
The company that would become eBay was founded as a sole proprietorship under the name AuctionWeb in September 1995 by Pierre Omidyar. The company changed its name to eBay in September 1997. The company reports selling just over $7 million in goods before being a California-registered corporation in May 1996.
This article was initially written as part of a PDF report sponsored by Iron Mountain and was written, edited, and published in alignment with our Emerj sponsored content guidelines. Learn more about our thought leadership and content creation services on our Emerj Media Services page.
The Allstate Corporation, or simply ‘Allstate,’ was founded by Sears, Roebuck & Co., then-president General Robert E. Wood in 1931. Auto liability insurance began as the company’s flagship product and remains so today. The company added various coverage types throughout the 50s and 60s, including commercial, health, life, and personal liability insurance.
Verizon is the second-largest telecommunications company by revenue and the largest by market capitalization. The company is also the largest wireless provider in the United States with a reported 143 million subscriptions. In its 2021 annual report, the company reported revenues of $126.3 billion. Verizon is traded on the NYSE with a market cap of approximately $194.5 billion. The company employs over 118,000.
Per Alibaba’s annual report, its revenue in 2021 exceeded 717 billion yuan (approximately 109 billion U.S. dollars), while its active yearly customers reached nearly 1.3 billion people. As of March 2022, Alibaba trades on the NYSE and has an approximate market cap of $225 billion.
This article was originally written as part of a PDF report sponsored by Daitan, and was written, edited and published in alignment with our transparent Emerj sponsored content guidelines.
This article was originally written as part of a PDF report sponsored by expert.ai, and was written, edited and published in alignment with our transparent Emerj sponsored content guidelines. Learn more about our thought leadership and content creation services on our Emerj Media Services page.
Increasingly, technology and business leaders look to AI project managers to make the execution (and success) of their AI projects more predictable. Executives and decision makers want AI projects to mature so they are more like the software development projects that have been with us for a generation. But, any AI project manager hoping to deliver on those expectations knows that success in AI projects requires an end-to-end thinking rarely found today.
In the enterprise world, more and more companies are crossing the chasm to test, and then deploy, their first AI solutions. To navigate this sometimes unfamiliar territory, enterprise leaders increasingly scrutinize the AI project selection process.
About AI Power: AI Power is an article series focused on the long-term consequences of AI, and how power is or will be influenced by AI technologies. Some previous AI Power articles - including "The SDGs of Strong AI" and "AI Ethics at War" have been popular over the years - but I've taken a hiatus from writing AI Power articles but suspect that I'll be creating more in 2022. I'm grateful to my friends for helping to put this first piece together - I hope you enjoy it. - Daniel Faggella
As far back as 2018 when we surveyed over forty banking industry leaders to discover the biggest issues with AI adoption, enterprise culture was already emerging as top of mind. Since then, we have found similar frustrations around enterprise culture in every industry. More than lack of data science talent, lack of appropriate culture serves as the largest and most consistent barrier to adoption.
Successful AI vendors know that 90% of the value they bring to the table lies in a deep understanding of the client's context, including:
Most early stage AI consulting firms don’t have the budget to hire expensive machine learning talent. For non-technical founders who can’t do the ML engineering themselves, this means getting creative when it comes to AI project delivery.
How AI project leaders provide the best chance at sustainable success in AI adoption?
The answer is simple: Frankly communicate both near-term and long-term value, and help leadership understand the importance of seeing measurable results, and the value of building a stronger AI foundation for future projects.
Artificial intelligence projects are more like R&D than they are like traditional IT. It is experimentation as much as it is adoption, and this difference is one of many reasons that AI projects take longer to integrate, and often hit bottlenecks that prevent them from being used in production.
Most AI product firms are founded and grown in a similar way.
It usually goes something like this:
One of the biggest hurdles to AI adoption and integration is a lack of proper expectations about applying AI in an existing business. Executives and their teams often go into the process blind because so few companies have learned these important lessons and challenges and because even fewer have successfully adopted AI in a way that delivers ROI.
The financial services industry is buried in paperwork, and the NLP use-cases in banking and insurance grow every year.
As artificial intelligence makes its way into more industries and workflows, more and more non-technical team members will be charged with leading AI projects. The next wave of AI catalysts will be familiar with AI at a conceptual level (read: executive AI fluency), but will mostly be expert in bridging AI's capabilities to important business workflows and objectives.
When most professionals think about “AI consulting” they tend to think about technical machine learning services, like: Building our data infrastructure, crafting and testing new algorithms, interesting AI systems into existing IT infrastructure.