podcast interviews Articles and Reports

Our podcast interviews feature the best and brightest executives and researchers in artificial intelligence today, and each episode highlights current and near-term AI use-cases of value for business leaders. Explore our full list of AI podcast episodes below:

How Data Lakes Support ML in Industry - with Cloudera's Amr Awadallah

How Data Lakes Support ML in Industry – with Cloudera’s Amr Awadallah

Episode Summary: If you're going to apply machine learning (ML) in a business context, you need a lot of data, and algorithms across the board perform better with more recent, rich, and relevant data. Today, there are companies whose entire business models are predicated on helping others make sense of and use of this type of information, as more entities look for the first place to apply ML in their organization.  In this episode, we speak with the CTO and Co-Founder of one such company—Palo Alto-based Cloudera. CTO Amr Awadallah, PhD, speaks with us this week about where he sees "data lakes" (or "data hubs", Cloudera's preferred term) and warehouses play an important role in ML applications in business. Based on his experiences helping a variety of companies in many countries set up data lakes, Amwadallah is able to distill and communicate these uses in three broad categories that apply across industries as companies look to apply ML applications to solve tough problems and ask more complex questions using unstructured data.

Machine Learning for Media Monitoring - with Signal Chief Data Scientist

Machine Learning for Media Monitoring – with Signal Chief Data Scientist

Episode Summary: One facet of business that nearly any industry has in common is the need to stay on top of news in their respective market, including competitor strategies or understanding changes in news related to the field. Media monitoring is a domain that machine learning (ML) is well suited for, with it's ability to coax out headlines, contextual information, and financial data from the seemingly endless stream of social, blog, and other information on the web today. Signal is a company that uses ML specifically for these purposes. In this episode, we speak with Signal's Chief Data Scientist and Co-founder Dr. Miguel Martinez, who dives into real business use cases illustrating the use of machine learning for media monitoring across industries.

Tuning Machine Learning Algorithms with Scott Clark 2

Tuning Machine Learning Algorithms with Scott Clark

Episode Summary: What does it mean to tune an algorithm, how does it matter in a business context, and what are the approaches being developed today when it comes to tuning algorithms? This week's guest helps us answer these questions and more. CEO and Co-Founder Scott Clark of SigOpt takes time to explain the dynamics of tuning machine learning algorithms, goes into some of the cutting-edge methods for getting tuning done, and shares advice on how businesses using machine learning algorithms can continue to refine and adjust their parameters in order to glean greater results.

Tuning Machine Learning Algorithms with Scott Clark 1

How to Raise Money for Your AI Startup – Canvas Ventures’ Ben Narasin

Episode Summary: In this episode, recorded live at Canvas Ventures in Portola Valley, I speak with Ben Narasin, a general partner with Canvas and an avid venture investor in AI and ML companies. Ben doesn't look to invest in AI; instead, he looks for solid companies in which to invest, a subtle but important difference in a startup world that is increasingly caught up in the explosion of AI and ML technologies. Besides making important distinctions on where investments can make a return and how to raise money for your AI startup, this interview is also chock full of great analogies (give me golden dragons all day long—anyone?).

Tuning Machine Learning Algorithms with Scott Clark

How to Learn Machine Learning – an Investor’s Perspective

Episode Summary: There’s been lot of hype around AI and ML in business over the past five years. Even among investors exist a lot of misconceptions about using ML in a business context, and how to get up to speed on and learn machine learning as it applies to utility in industry. Recently, I talked with Benjamin Levy of BootstrapLabs in San Francisco, whom I met through an investment banking friend in Boston.

Tuning Machine Learning Algorithms with Scott Clark 3

Machine Learning in Infosecurity – Current Challenges and Future Applications

Episode Summary: Uday Veeramachaneni is taking a new approach to machine learning in infosecurity aka infosec. Traditionally, infosec has approached predicting attacks in two ways: 1—through a system of hand-designed rules and 2—through anomaly detection, a technique that detects statistical outliers in the data. The problem with these approaches, Veermachaneni says, is that the signal-to-noise ratio is too low. In this episode, Veermachaneni discusses how his company, PatternEx, is using machine learning to provide more accurate attack prediction. He also discusses the cooperative role of man and machine in building robust automated cyberdefense systems and walks us through a common security attack scenario.