ai future outlook Articles and Reports

Explore future perspectives on artificial intelligence applications and trends - including products and applications in marketing, finance, and other sectors.

Machine Learning Finance Interviews

4 Machine Learning Finance Interviews Worth Listening To

More data, less problems?
How AI is transforming the financial marketplace and operations from the inside out.
AI got a head-start in the information-rich financial industry over two decades ago, though the applications of today—robo-advisors and algorithmic traders, for example—are far more autonomous and omnipresent, accelerated in large by the increasing availability of data and advanced analytics technologies. The "prestige" associated with the use of AI and ML technologies in finance is reflected in initiatives like The AI Financial Summit, an invite-only conference that gathers C-level execs from across the financial industry sector and puts them in a room with AI experts and service providers. But a company doesn't necessarily need to be invited to a closed conference in order to apply or learn from emerging technologies in the industry.

A VC's Perspective –7 Artificial Intelligence Trends That Actually Matter

A VC’s Perspective –7 Artificial Intelligence Trends That Actually Matter

The following article has been written by Luigi Congedo, principal at BootstrapLabs. BootstrapLabs is an AI-focused VC firm in San Francisco. Editing and quotes added by the Emerj team.For information about our contributed material and publishing arrangements with brands, please visit our partnerships page.

Shopify's Kit - The AI Personal Marketing Assistant 10

Top Machine Learning Podcast Interviews of All Time

Over the past few years, we've sought out and spoken to some of the top researchers, entrepreneurs, and executives involved in the machine learning field across industries and domains. This week, we decided to collate our five most popular machine learning podcast episodes in one place (they're listed below, ranked in order from most popular by number of downloads).

Amazon Machine Learning Exec: 3 Tips for Working with Sparse Models

Amazon Machine Learning Exec: 3 Tips for Working with Sparse Models

At the recent KDD2016 (knowledge discovery and data mining) conference in San Francisco, Managing Director at Amazon Development Center Germany GmbH and Director of Amazon Machine Learning Ralf Herbrich discussed three lessons that he’s learned while working with sparse machine learning models at scale.

Commerce Driving Chat Bots to Say It Better

Commerce Driving Chat Bots to Say It Better

Bots are where the web was in 1994. The arena is still wide open, and we don’t know what’s going to work and what’s not, or areas where the overhype is most prevalent. The rise of the chat bots domain is still filled with unknowns, but there’s a tremendous amount of money to be invested and made in this industry, along with big wins and big losses, especially during this training-wheels period.

2 Business Use Cases of Data Visualization: Solving Tough Problems

2 Business Use Cases of Data Visualization: Solving Tough Problems

[This story has been revised and updated.]

Big data has turned out to be a key ingredient in turning machine learning from an abstract technology into a potentially invaluable tool of insight and foresight for businesses across industries. The burgeoning cognitive technologies of predictive analytics and data visualization are opening new windows of opportunity to companies trying to solve complex problems with multiple moving parts. From finding ways to retain new customers to more efficiently monitoring multiple performance metrics and easing performance volatility, more companies are gravitating towards machine learning-based data analysis tools in an effort to optimize operations and find innovative solutions and opportunities that were once too obscure for only the human eye.