AI Articles and Reports about Business intelligence and analytics

Explore articles and reports related to artificial intelligence for business intelligence and analytics, including applications in forecasting, predictive analytics, text analysis, and more.

inventory management with machine learning

Inventory Management with Machine Learning – 3 Use Cases in Industry

In a global market that makes room for more competitors by the day, some companies are turning to AI and machine learning to try to gain an edge. Supply chain and inventory management is a domain that has missed some of the media limelight, but one where industry leaders have been hard at work developing new AI and machine learning technologies over the past decade.

deep learning in oncology

Deep Learning in Oncology – Applications in Fighting Cancer

Deep Learning plays a vital role in the early detection of cancer. A study published by NVIDIA showed that deep learning drops error rate for breast cancer diagnoses by 85%. This was the inspiration for Co-Founders Jeet Raut and Peter Njenga when they created AI imaging medical platform Behold.ai. Raut’s mother was told that she no longer had breast cancer, a diagnosis that turned out to be false and that could have cost her life.

Data-Driven Software for Enterprise

Data-Driven Software for Enterprise – Evolving Industry Standards

Episode Summary: At Emerj, we like to look around the corner at where AI is impacting industries and how people can make better business decisions based on that information. AI and data-driven software for enterprise is an emerging topic of interest, and in this episode we get a venture capitalist's perspective on where AI will play a vital and necessary role with real results in software and industry.

business intelligence case studies

5 Business Intelligence & Analytics Case Studies Across Industry

When businesses make investments in new technologies, they usually do so with the intention of  creating value for customers and stakeholders and making smart long-term investments. This is not always an easy thing to do when implementing cutting-edge technologies like artificial intelligence (AI) and machine learning. Business intelligence case studies that show how these technologies have been leveraged with results are still scarce, and many companies wonder where to apply machine learning first (a question at the core of one of Emerj's most recent expert consensuses.)
Artificial intelligence and machine learning have certainly increased in capability over the past few years. Predictive analytics can help glean meaningful business insights using both sensor-based and structured data, as well as unstructured data, like unlabeled text and video, for mining customer sentiment. In the last few years, a shift toward "cognitive cloud" analytics has also increased data access, allowing for advances in real-time learning and reduced company costs. This recent shift has made an array of advanced analytics and AI-powered business intelligence services more accessible to mid-sized and small companies.
In this article, we provide five case studies that illustrate how AI and machine learning technologies are being used across industries to help drive more intelligent business decisions. While not meant to be exhaustive, the examples offer a taste for how real companies are reaping real benefits from technologies like advanced analytics and intelligent image recognition.

Jay Perrett (Aria Networks) - Genetic Algorithms Interview

Genetic Algorithms Evolve Simple Solutions Across Industries

Episode Summary: As it turns out, survival of the fittest applies as much to algorithms as it does to amoebas, at least when we're talking about genetic algorithms. While we've explored other types of machine learning algorithms in business in past articles, genetic algorithms are newer territory. We recently interviewed Dr. Jay Perret, CTO of Aria Networks, a company that uses genetic algorithm-based technology for solving some of industry's toughest problems, from optimization of business networks to pinpointing genetic patterns that are correlated with specific diseases.

machine learning in pharma and medicine

7 Applications of Machine Learning in Pharma and Medicine

When it comes to effectiveness of machine learning, more data almost always yields better results—and the healthcare sector is sitting on a data goldmine. McKinsey estimates that big data and machine learning in pharma and medicine could generate a value of up to $100B annually, based on better decision-making, optimized innovation, improved efficiency of research/clinical trials, and new tool creation for physicians, consumers, insurers, and regulators.
Where does all this data come from? If we could look at labeled data streams, we might see research and development (R&D); physicians and clinics; patients; caregivers; etc. The array of (at present) disparate origins is part of the issue in synchronizing this information and using it to improve healthcare infrastructure and treatments. Hence, the present-day core issue at the intersection of machine learning and healthcare: finding ways to effectively collect and use lots of different types of data for better analysis, prevention, and treatment of individuals.
Burgeoning applications of ML in pharma and medicine are glimmers of a potential future in which synchronicity of data, analysis, and innovation are an everyday reality. We provide a breakdown of several of these pioneering applications, and provide insight into areas for continued innovation.

Business intelligence and analytics

Explore articles and reports related to artificial intelligence for business intelligence and analytics, including applications in forecasting, predictive analytics, text analysis, and more.