AI Articles and Analysis about Security

Explore articles and reports related to artificial intelligence for security, including applications in cybersecurity, defense, fraud detection, and more.

Facial Recognition Applications - Security, Retail, and Beyond

Facial Recognition Applications – Security, Retail, and Beyond

Facial recognition technology has been traditionally associated with the security sector but today there is active expansion into other industries including retail, marketing and health. By 2022, the global facial recognition technology market is projected to generate an estimated $9.6 billion in revenue with a compound annual growth rate (CAGR) of 21.3 percent*.

Computer Vision for Body Language - How it Works and How it Could be Used

Computer Vision for Body Language – How it Works and How it Could be Used

As a human, we can often understand the mood, intention, and future action of another person just by looking at them. We see their posture, their facial expression, where their eyes are focused, and we can get a decent understanding of what they might do next. The problem of computer vision for body language is a much harder problem to solve, but we are indeed making progress.

AI for Cameras and Computer Vision - with Algolux's Allan Benchetrit

AI for Cameras and Computer Vision – with Algolux’s Allan Benchetrit

In the future, the vast majority of photos and videos recorded won't be seen and used by humans - they'll be seen and used by machines. This week we interview Allan Benchetrit, CEO at Algolux - a Montreal-based AI company focusing on computational imaging.

Unmanned Aerial Vehicles (UAVs) - Comparing the USA, Israel, and China

Unmanned Aerial Vehicles (UAVs) – Comparing the USA, Israel, and China

While in previous decades military unmanned aerial vehicles (UAV) were very simple pieces of equipment, the technology has advanced rapidly. They are now used all over the world and are a multi-billion dollar industry. According to the Teal Group, current worldwide military UAV production stands at around $2.8 billion, and they project it will grow to $9.4 billion in 2025.

Military Robotics Innovation

Military Robotics Innovation – Comparing the US to Other Major Powers

The market for military robotics is massive, and many developments can be observed in public competitions, university campuses, and DARPA's own announcements.

Machine Learning for Fraud Detection - Modern Applications and Risks

Machine Learning for Fraud Detection – Modern Applications and Risks

Episode Summary1: Fraud attacks have become much more sophisticated. Account takeovers are happening more often. Many security attacks involve multiple methods and unexpected attacks can devastate businesses in just a few days, as we saw with Neiman Marcus and Target. False promotion and abuse is seen not only on social media sites but is also targeted at business. To combat these risks, fraud solutions need to be smarter to keep pace with fraudsters to prevent attacks and react quickly when they do happen. This requires a fast-learning solution with the ability to continually evolve - which calls for the application machine learning for fraud detection. In this episode we talk to Kevin Lee from Sift Science and examine the shifts in the info security landscape over the past ten or fifteen year. Lee also highlights what new kinds of fraud are now possible and what machine learning solutions are available.

deep learning malware defense

Deep Learning on Front Line Against New Malware Attacks

Episode Summary: The upsurge of malware and sophisticated attacks continue to keep cybersecurity in the spotlight, but new developments in AI and deep learning offer more advanced solutions to combat security threats. This week, we catch up with Eli David, CTO of Deep Instinct—a company founded in Israel with US headquarters in San Francisco—that applies deep learning in malware defense and information security. David spoke with us about why and how the deep-learning approach to AI is relevant to the future of cybersecurity.

darktrace Justin Fier

Darktrace’s Justin Fier – Malicious AI and the Dark Side of Data Security

Episode Summary: There is, in fact, a dark side to AI. Although we’re certainly not at the point where we need to fear terminators, it’s certainly been leveraged toward malicious aims in a business context. In data security, tremendous venture dollars are going into preventing fraud and theft, but this same brand of technology is also being use by the “bad guys” to try and steal that information and break into machine learning-protected systems. In this episode, I speak with Justin Fier, director of cyber intelligence at Darktrace, who speaks about the malicious uses of AI and how companies like Darktrace have been forced to fight these “AI assailants.” Fier provides valuable insights into the role of unsupervised learning, an addition to the full list of AI for data security applications that we've covered in the past.
 

Security

Explore articles and reports related to artificial intelligence for security, including applications in cybersecurity, defense, fraud detection, and more.