Google Algorithm Disrupts Medical Field, Intel Launches Automated Driving Group, and More  - This Week in Artificial Intelligence 12-02-16 5

Applying Computational Linguistics to Streamline the Legal Landscape


Episode Summary
There’s not that many serial tech entrepreneurs in the legal space, but Gary Sangha is one of them. Sangha is CEO and founder of LitIQ, which is applying machine learning and computational linguistics to legal documents to help lawyers avoid making drafting mistakes. In this episode, Sangha talks about where this type of software is most useful and legitimate, what the legal landscape in relationship to machine learning may look like in the next few years, and how this technology may apply across industries.

Google Algorithm Disrupts Medical Field, Intel Launches Automated Driving Group, and More  - This Week in Artificial Intelligence 12-02-16 4

OpenAI’s Ilya Sutskever on Preparing for the Future of Intelligence

Episode Summary: Some organizations are leveraging artificial intelligence (AI) to help the world with research, some to help companies with marketing, and some are intent on ensuring that the future of AI doesn’t result in the end of humanity. Theres’a good likelihood that if you're reading this interview, that you're already familiar with OpenAI, an organization with the sole purpose of ensuring that the future of man and machines is a friendly one, and that the concentration of power and intelligence isn’t centralized in a way that would make AI a dangerous tool.

Google Algorithm Disrupts Medical Field, Intel Launches Automated Driving Group, and More  - This Week in Artificial Intelligence 12-02-16 3

Future Applications of Machine Vision – an Interview with Cortica’s CEO

Episode Summary: Right now, you can take a picture of a flower in your garden and post it on social media to see if anyone knows its proper name. Wouldn’t it be nice, though, if a machine could identify the correct name and species in the picture you just took? Solving this problem in applications of machine vision is something that CEO Igal Raichelgauz and his team are working on at Cortica, a machine learning company that is not focused on deep learning, but is instead taking a more "shallow" approach. In this episode, Raichelgauz articulates Cortica's approach, which is based on neurology and goes against some of the current approaches in getting machines to learn. We discuss some of these primary differences and dive into Cortica's goals for applying machine vision in consumer products.

Google Algorithm Disrupts Medical Field, Intel Launches Automated Driving Group, and More  - This Week in Artificial Intelligence 12-02-16 10

Google Translate Goes Neural, Intel Optimizes for AI, and More – This Week in Artificial Intelligence 11-18-16

1 - Found in Translation: More Accurate, Fluent Sentences in Google Translate

What is a GPU, and How Are Companies Using Them Now? 1

What is a GPU, and How Are Companies Using Them Now?

Episode Summary: This week’s guest is Kimberly Powell, senior director of business development at NVIDIA. In an interview conducted at the 2016 AI Summit in San Francisco, Emerj kicked off the conversation by asking Powell, 'What is a GPU?' Powell explains not only the difference between GPUs and CPUs but also the factors that are making the former easier to use. She also delves into how Nvidia and others are working to make deep learning technology and related innovations more accessible to small businesses and startups across industries, a topic of interest to many companies in the Bay area and beyond. Powell is one of several female executives in the AI field who we've been fortunate enough to interview this year.

7 Chatbot Use Cases That Actually Work 950×540 (1)

7 Chatbot Use Cases That Actually Work

Since Facebook Messenger, WhatsApp, Kik, Slack, and a growing number of bot-creation platforms came online, developers have been churning out chatbots across industries, with Facebook's most recent bot count at over 33,000. At a CRM technologies conference in 2011, Gartner predicted that 85 percent of customer engagement would be fielded without human intervention. Though a seeming natural fit for retail and purchasing-related decisions, it doesn't appear that chatbot technology will play favorites in the coming few years, with uses cases being promoted in finance, human resources, and even legal services.

The Economic Impact of Artificial Intelligence - An Interview with Accenture's CTO

The Economic Impact of Artificial Intelligence – An Interview with Accenture’s CTO

Episode Summary: Accenture is a leading global professional services company in the tech space, providing services to many of the Fortune 500 and their global equivalents. The company recently conducted a study, combined with expertise from economists and AI researchers, about the longer-term economic impact of artificial intelligence around the world. In this episode, I spoke with Chief Technology Officer Paul Daugherty, who has been with Accenture since 1986, and who was joined by Global Technology R&D Lead Marc Carrel-Billiard. We met up at a coffee shop after an AI Summit in San Francisco, and I asked Paul and Marc about what they had learned from this newly-published study and what they consider to be the significant impacts of *AI and automation on the future job market.

Machine Learning that Learns More Like Humans, an AI Lip-Reading 'Machine', and More - This Week in Artificial Intelligence 11-11-16

Machine Learning that Learns More Like Humans, an AI Lip-Reading ‘Machine’, and More – This Week in Artificial Intelligence 11-11-16

1 - Artificial-Intelligence System Surfs Web to Improve Its Performance

Information extraction involves classifying data items that are stored in plain text, and is a major area of research for machine learning scientists. Last week, a research team from MIT introduced a new approach to information extraction for machine learning systems at the Association for Computational Linguistics’ Conference on Empirical Methods on Natural Language Processing, and won a best-paper award. Instead of feeding their system as much data as possible, the team's winning approach takes a different route and focuses on a much smaller data set, a similar process used by human beings - if you're reading a paper that you don't understand, you're likely to do a search on the web and find articles that you are able to understand. This new system approach does something similar; if the system's confidence score is low in assessing a particular text, it will query for more information, pulling up a handful of new articles from the web that correlate with a specific set of terms. In future, this model could be applied to sparse data and save much time in reviewing databases.

Google Algorithm Disrupts Medical Field, Intel Launches Automated Driving Group, and More  - This Week in Artificial Intelligence 12-02-16 1

Crowdsourcing a Machine Learning Hedge Fund

Episode Summary: Crowdsourcing is a relatively common term in technical vernacular today. Even if you're not a self-identified "techie", you may very may well have leveraged crowdsourcing in journalism, the sciences, public policy, or elsewhere. One area in which this concept hasn’t really taken off is in finance and hedge funds. In this episode, we speak with Numerai Founder Richard Craib, whose company is crowdsourcing a machine learning hedge fund. Their model is based on pooling data science talent from all over the world and using "anonymous" models to train financial data. These models compete against one another, and the winning models' creators are rewarded in bitcoin - a process based entirely on encryption and anonymity. Craib speaks about his overarching vision for the company, and also delves into his thoughts on the past, present, and future of AI applications in finance.
 

Google Algorithm Disrupts Medical Field, Intel Launches Automated Driving Group, and More  - This Week in Artificial Intelligence 12-02-16 7

Where Healthcare’s Big Data Actually Comes From

While there have been and continue to be innovative and significant machine learning applications in healthcare, the industry has been slower to come to and embrace the big data movement than other industries. But a snail's pace hasn't kept the data from mounting, and the underlying value in the data now available to health care providers and related service providers is a veritable goldmine. In this editorial, we provide an overview of where healthcare's big data actually comes from, and why providing robust data analytics services in this sector matters.