Natural Language Processing – Business Applications

Natural Language Processing – Business Applications

Executives worry about their businesses.

They often have to navigate, with limited resources, a stormy market made of customers, competitors, and regulators, and the interactions between all these actors make finding answers to business questions a complex process.

Tuning Machine Learning Algorithms with Scott Clark 3

Machine Learning in Infosecurity – Current Challenges and Future Applications

Episode Summary: Uday Veeramachaneni is taking a new approach to machine learning in infosecurity aka infosec. Traditionally, infosec has approached predicting attacks in two ways: 1—through a system of hand-designed rules and 2—through anomaly detection, a technique that detects statistical outliers in the data. The problem with these approaches, Veermachaneni says, is that the signal-to-noise ratio is too low. In this episode, Veermachaneni discusses how his company, PatternEx, is using machine learning to provide more accurate attack prediction. He also discusses the cooperative role of man and machine in building robust automated cyberdefense systems and walks us through a common security attack scenario.

Deep Learning Applications in Medical Imaging 9

Deep Learning Applications in Medical Imaging

In 1895, the German physicist, Wilhelm Röntgen, showed his wife Anna an X-ray of her hand. “I have seen my death,” she said. Medical imaging broke paradigms when it first began more than 100 years ago, and deep learning medical applications that have evolved over the past few years seem poised to once again take us beyond our current reality and open up new possibilities in the field.

Deep Learning Applications in Medical Imaging 3

How to Hire Machine Learning Talent – with HIRED’s Parshu Kulkarni

Episode Summary: When it comes to finding an expert who knows how to hire machine learning  talent, Parshu Kulkarni may just be the guy to ask. Not only is Kulkarni one of a small subsegment of the global population with an advanced degree in data science who has also been hired to work in tech companies like eBay, but he's been on the unique side hiring of ML and AI talent.
Today, Kulkarni works full-time as Head of Data Science at Hired, Inc., a giant platform for hiring top talent in tech and other areas. In this episode, Kulkarni provides insight into what executives with experience in data science look for in potential hires, alongside what businesspeople get wrong about machine learning. He also gives his insights on the supply-and-demand landscape for data scientists now and in the future. Kulkarni's is an interesting interview for anyone looking to hire or be hired as a data scientist in the ML and AI space.

Deep Learning Applications in Medical Imaging 8

Machine Learning Algorithms for Business Applications – Complete Guide

With the development of free, open-source machine learning and artificial intelligence tools like Google’s TensorFlow and sci-kit learn, as well as “ML-as-a-service” products like Google’s Cloud Prediction API and Microsoft’s Azure Machine Learning platform, it’s never been easier for companies of all sizes to harness the power of data. But machine learning is such a vast, complex field. Where do you start learning how to use it in your business?

Deep Learning Applications in Medical Imaging 2

How Algorithms Improve Advertising – AI for Marketing Optimization

Episode Summary: In marketing, there are lots of applications in AI and machine learning (ML), from recommendation engines to predictive analytics and beyond. At the company Albert, there are even more ambitious projects underway - like automating the process of marketing altogether by having a machine run and generate ads, or test and spend the marketing budget of a company. Or Shani, CEO of Adgorithms, focuses on the quantitative aspects and optimization of marketing, using algorithms to improve advertising processes. In this interview, Shani talks about how Adgorithms' smart marketing platform "Albert" meshes with humans in marketing, and also discusses how these roles might change over the next 5 to 10 years as we move towards an ever more automated marketplace.

Deep Learning Applications in Medical Imaging 4

Automating White Collar Work – Two Examples and a Look Forward

Episode Summary: Not all knowledge work can be crunched by a program, but there are some hard-to-automate business processes that a select few entities are making an attempt to automate now. Boston-based Rage Frameworks, Inc. is one such company, and in this episode we speak with Senior Vice President (SVP) Joy Dasgupta about specific applications of automation technologies applied to white collar environments. Rage Frameworks has developed intelligent machines that have been able to take over process that, prior to the emergence of AI and automation technologies, would have required thousands of people to accomplish. These developments are a microcosm of what is to come, and the process is not without its ethical considerations (as discussed in a previous interview with Yoshua Bengio). But Dasgupta's insights provide a concrete glimpse into how these processes are being automated in the knowledge workplace today and what that might mean or look like decades from now.

Deep Learning Applications in Medical Imaging 7

When Will Autonomous Cars be Mainstream?

Episode Summary: This week we speak with CEO and Founder of Nexar Inc., Eran Shir, whose company has created a dashboard app that allows drivers to mount a smartphone, which then collects visual information and other data, such as speed from your accelerometer, in order to help detect and prevent accidents.
The app also serves as a way to reconstruct what happens in a collision - a unique solution in a big and untapped market. In this episode, Shir gives his vision of a world where the roads are filled with cyborgs, rather than autonomous robots, i.e. people augmented with new sensory information that trigger notifications, warnings or prompts for safer driving behavior, amongst a network of cloud-connected cars.  He also touches on what the transition might look like in response to the question - when will autonomous cars be mainstream?

Deep Learning Applications in Medical Imaging

How to Leverage Data Assets for Business – with Kenneth Cukier

Episode Summary: In this episode, we speak with Senior Editor for The Economist in digital and data products and Co-author of "Big Data: A Revolution that Will Transform How We Work, Live and Think", Kenneth Cukier, who speaks on the technologies that underlie big data and make it what it is today. Cukier addresses common misconceptions about machine learning and dives into how companies can catch up with this technology by thinking through, assessing ROI, and making sense of the dynamics of data assets for business. Listen for Cukier's apt analogy in comparing machine learning technology to the dynamics of computing from decades ago.

Deep Learning Applications in Medical Imaging 5

Job Automation Predictions from 2016 Silicon Valley Survey

Job automation predictions from an individual expert typically draw from years of academic research experience, or time "in the trenches" of industry. With growing interest and speculation on the job market of the next decade, we set out to garner a perspective as to what Silicon Valley thinks about the possibilities of automations in various business tasks.
We wanted to know - what work functions have the most potential for near-term automation?
In the infographics and article below, we explore the survey responses from nearly 80 Bay Area investors, founders, and tech folks - on which business functions have the greatest potential for automation today, and in the coming five years ahead.