A VC's Perspective –7 Artificial Intelligence Trends That Actually Matter

A VC’s Perspective –7 Artificial Intelligence Trends That Actually Matter

The following article has been written by Luigi Congedo, principal at BootstrapLabs. BootstrapLabs is an AI-focused VC firm in San Francisco. Editing and quotes added by the Emerj team.For information about our contributed material and publishing arrangements with brands, please visit our partnerships page.

How Data Lakes Support ML in Industry - with Cloudera's Amr Awadallah

How Data Lakes Support ML in Industry – with Cloudera’s Amr Awadallah

Episode Summary: If you're going to apply machine learning (ML) in a business context, you need a lot of data, and algorithms across the board perform better with more recent, rich, and relevant data. Today, there are companies whose entire business models are predicated on helping others make sense of and use of this type of information, as more entities look for the first place to apply ML in their organization.  In this episode, we speak with the CTO and Co-Founder of one such company—Palo Alto-based Cloudera. CTO Amr Awadallah, PhD, speaks with us this week about where he sees "data lakes" (or "data hubs", Cloudera's preferred term) and warehouses play an important role in ML applications in business. Based on his experiences helping a variety of companies in many countries set up data lakes, Amwadallah is able to distill and communicate these uses in three broad categories that apply across industries as companies look to apply ML applications to solve tough problems and ask more complex questions using unstructured data.

Demo

Machine Learning Marketing – Expert Consensus of 51 Executives and Startups

When it comes to business applications of machine learning, marketing is always near the top of the list. Modern digital marketing offers a huge volume of quantifiable data for teams to work with, and marketing can be said to take precedent over other areas like customer service and business intelligence because of it's direct tie to driving revenue. Machine learning marketing applications are still relatively novel for most small and medium-sized business, but this may change drastically over the next five years.

Machine Learning in Human Resources - Applications and Trends

Machine Learning in Human Resources – Applications and Trends

Human resources has been slower to come to the table with machine learning and artificial intelligence than other fields—marketing, communications, even health care. But the value of machine learning in human resources can now be measured, thanks to advances in algorithms that can predict employee attrition, for example, or deep learning neural networks that are edging toward more transparent reasoning in showing why a particular result or conclusion was made.

Machine Learning for Media Monitoring - with Signal Chief Data Scientist

Machine Learning for Media Monitoring – with Signal Chief Data Scientist

Episode Summary: One facet of business that nearly any industry has in common is the need to stay on top of news in their respective market, including competitor strategies or understanding changes in news related to the field. Media monitoring is a domain that machine learning (ML) is well suited for, with it's ability to coax out headlines, contextual information, and financial data from the seemingly endless stream of social, blog, and other information on the web today. Signal is a company that uses ML specifically for these purposes. In this episode, we speak with Signal's Chief Data Scientist and Co-founder Dr. Miguel Martinez, who dives into real business use cases illustrating the use of machine learning for media monitoring across industries.

Everyday Examples of Artificial Intelligence and Machine Learning 950×540

Everyday Examples of Artificial Intelligence and Machine Learning

With all the excitement and hype about AI that’s “just around the corner”—self-driving cars, instant machine translation, etc.—it can be difficult to see how AI is affecting the lives of regular people from moment to moment. What are examples of artificial intelligence that you're already using—right now?

Tuning Machine Learning Algorithms with Scott Clark 2

Tuning Machine Learning Algorithms with Scott Clark

Episode Summary: What does it mean to tune an algorithm, how does it matter in a business context, and what are the approaches being developed today when it comes to tuning algorithms? This week's guest helps us answer these questions and more. CEO and Co-Founder Scott Clark of SigOpt takes time to explain the dynamics of tuning machine learning algorithms, goes into some of the cutting-edge methods for getting tuning done, and shares advice on how businesses using machine learning algorithms can continue to refine and adjust their parameters in order to glean greater results.

Tuning Machine Learning Algorithms with Scott Clark 1

How to Raise Money for Your AI Startup – Canvas Ventures’ Ben Narasin

Episode Summary: In this episode, recorded live at Canvas Ventures in Portola Valley, I speak with Ben Narasin, a general partner with Canvas and an avid venture investor in AI and ML companies. Ben doesn't look to invest in AI; instead, he looks for solid companies in which to invest, a subtle but important difference in a startup world that is increasingly caught up in the explosion of AI and ML technologies. Besides making important distinctions on where investments can make a return and how to raise money for your AI startup, this interview is also chock full of great analogies (give me golden dragons all day long—anyone?).

Machine Learning in Gaming - Building AIs to Conquer Virtual Worlds

Machine Learning in Gaming – Building AIs to Conquer Virtual Worlds

In virtual worlds, AIs are getting smarter. The earliest instance of artificial intelligence in games was in 1952, when a lone graduate student in the UK created a rules-based AI that could play a perfect game of tic-tac-toe. Today, teams of researchers are working on—or have already succeeded in—creating AIs that can defeat humans in increasingly complex games.

Tuning Machine Learning Algorithms with Scott Clark

How to Learn Machine Learning – an Investor’s Perspective

Episode Summary: There’s been lot of hype around AI and ML in business over the past five years. Even among investors exist a lot of misconceptions about using ML in a business context, and how to get up to speed on and learn machine learning as it applies to utility in industry. Recently, I talked with Benjamin Levy of BootstrapLabs in San Francisco, whom I met through an investment banking friend in Boston.