Investing in AI Healthcare Applications – and Why Doctors Don't Want to Be Replaced

Investing in AI Healthcare Applications – and Why Doctors Don’t Want to Be Replaced

Episode Summary: Venture investing in AI healthcare applications has been on the uptick and is directly related to the subject of this week's episode: just how the healthcare industry is (and isn't) being impacted by innovations in AI technology. Guest Steve Gullans of Boston-Based Excel Venture Management talks about some of the various healthcare-related ML and AI applications that he sees being brought to light, and touches on which innovations have a better chance of getting blocked and redirected by parties of interest and those that have more promise in being accepted and rolled out sooner.

deep learning in oncology

Deep Learning in Oncology – Applications in Fighting Cancer

Deep Learning plays a vital role in the early detection of cancer. A study published by NVIDIA showed that deep learning drops error rate for breast cancer diagnoses by 85%. This was the inspiration for Co-Founders Jeet Raut and Peter Njenga when they created AI imaging medical platform Behold.ai. Raut’s mother was told that she no longer had breast cancer, a diagnosis that turned out to be false and that could have cost her life.

Data-Driven Software for Enterprise

Data-Driven Software for Enterprise – Evolving Industry Standards

Episode Summary: At Emerj, we like to look around the corner at where AI is impacting industries and how people can make better business decisions based on that information. AI and data-driven software for enterprise is an emerging topic of interest, and in this episode we get a venture capitalist's perspective on where AI will play a vital and necessary role with real results in software and industry.

block 1.14

Wargaming Case Study: Gaming Company Analyzes Millions of Daily Events to Target it’s Marketing Efforts

Technology Provider: Cloudera
User Company: Wargaming
Industry: Gaming
Application: ML Infrastructure

block 1.13

ZenDesk Case Study: AI Advertising Targeting for Decreased Cost-Per-Lead

Technology Provider: MarianaIQ
User Company: ZenDesk
Industry: (Many)
Application: Marketing / Advertising

block 1.10

GlaxoSmithKline Case Study: Mining Online Discussions for Deeper Customer Insight

Technology Provider: Luminoso
User Company: GlaxoSmithKline (GSK)
Industries: Healthcare
b>Applications: Text and Language Processing

Why I Bootstrapped TechEmergence - from Dan Faggella

Why I Bootstrapped Emerj – from Dan Faggella

I’m excited to announce that Emerj has “raised” a bit over a million dollars to fund our mission moving forward. The usual path of the 20-something who moves to Silicon Valley is to gain some bootstrapped traction, find some investors, and get a seed round raised. In our case, the funds came entirely from the sale of my eCommerce business, Science of Skill, which sold this February of this year.
Over the last four and half years, we went from zero to well over $2,000,000 in gross sales, with a 1100% three-year combined growth rate. This is a rare article where I'll be writing as myself, Dan Faggella, outside of my immediate role as founder and editor.

Business Process Automations

A VC’s Take On Business Process Automation

Episode Summary: In some ways, investors in AI have to do a lot of what we do at Emerj, which is sort through marketing fluff and determine what's actually working and what's more of a pipe dream, as well as what's coming up in the next five years that seems inevitable and what's more likely to flop. In this episode we're joined by Li Jiang, a venture capitalist with GSV Capital whom I was connected with through BootstrapLabs. This week, Jiang speaks about the current areas of AI that he sees driving business process automations, as well as what technologies he believes will make a long-term impact in terms of automation. His insights on where AI automations are generating cost savings and increased efficiency, as well as what roles might be completely replaced or significantly augmented by AI, are useful nuggets for companies who are thinking through some of their own business processes and are eager to identify low-hanging fruit.

business intelligence case studies

5 Business Intelligence & Analytics Case Studies Across Industry

When businesses make investments in new technologies, they usually do so with the intention of  creating value for customers and stakeholders and making smart long-term investments. This is not always an easy thing to do when implementing cutting-edge technologies like artificial intelligence (AI) and machine learning. Business intelligence case studies that show how these technologies have been leveraged with results are still scarce, and many companies wonder where to apply machine learning first (a question at the core of one of Emerj's most recent expert consensuses.)
Artificial intelligence and machine learning have certainly increased in capability over the past few years. Predictive analytics can help glean meaningful business insights using both sensor-based and structured data, as well as unstructured data, like unlabeled text and video, for mining customer sentiment. In the last few years, a shift toward "cognitive cloud" analytics has also increased data access, allowing for advances in real-time learning and reduced company costs. This recent shift has made an array of advanced analytics and AI-powered business intelligence services more accessible to mid-sized and small companies.
In this article, we provide five case studies that illustrate how AI and machine learning technologies are being used across industries to help drive more intelligent business decisions. While not meant to be exhaustive, the examples offer a taste for how real companies are reaping real benefits from technologies like advanced analytics and intelligent image recognition.

Jay Perrett (Aria Networks) - Genetic Algorithms Interview

Genetic Algorithms Evolve Simple Solutions Across Industries

Episode Summary: As it turns out, survival of the fittest applies as much to algorithms as it does to amoebas, at least when we're talking about genetic algorithms. While we've explored other types of machine learning algorithms in business in past articles, genetic algorithms are newer territory. We recently interviewed Dr. Jay Perret, CTO of Aria Networks, a company that uses genetic algorithm-based technology for solving some of industry's toughest problems, from optimization of business networks to pinpointing genetic patterns that are correlated with specific diseases.