AI Articles and Analysis about Business intelligence and analytics

Explore articles and reports related to artificial intelligence for business intelligence and analytics, including applications in forecasting, predictive analytics, text analysis, and more.

deep learning in oncology

Deep Learning in Oncology – Applications in Fighting Cancer

Deep Learning plays a vital role in the early detection of cancer. A study published by NVIDIA showed that deep learning drops error rate for breast cancer diagnoses by 85%. This was the inspiration for Co-Founders Jeet Raut and Peter Njenga when they created AI imaging medical platform Behold.ai. Raut’s mother was told that she no longer had breast cancer, a diagnosis that turned out to be false and that could have cost her life.

Data-Driven Software for Enterprise

Data-Driven Software for Enterprise – Evolving Industry Standards

Episode Summary: At Emerj, we like to look around the corner at where AI is impacting industries and how people can make better business decisions based on that information. AI and data-driven software for enterprise is an emerging topic of interest, and in this episode we get a venture capitalist's perspective on where AI will play a vital and necessary role with real results in software and industry.

business intelligence case studies

5 Business Intelligence & Analytics Case Studies Across Industry

When businesses make investments in new technologies, they usually do so with the intention of  creating value for customers and stakeholders and making smart long-term investments. This is not always an easy thing to do when implementing cutting-edge technologies like artificial intelligence (AI) and machine learning. Business intelligence case studies that show how these technologies have been leveraged with results are still scarce, and many companies wonder where to apply machine learning first (a question at the core of one of Emerj's most recent expert consensuses.)
Artificial intelligence and machine learning have certainly increased in capability over the past few years. Predictive analytics can help glean meaningful business insights using both sensor-based and structured data, as well as unstructured data, like unlabeled text and video, for mining customer sentiment. In the last few years, a shift toward "cognitive cloud" analytics has also increased data access, allowing for advances in real-time learning and reduced company costs. This recent shift has made an array of advanced analytics and AI-powered business intelligence services more accessible to mid-sized and small companies.
In this article, we provide five case studies that illustrate how AI and machine learning technologies are being used across industries to help drive more intelligent business decisions. While not meant to be exhaustive, the examples offer a taste for how real companies are reaping real benefits from technologies like advanced analytics and intelligent image recognition.

Jay Perrett (Aria Networks) - Genetic Algorithms Interview

Genetic Algorithms Evolve Simple Solutions Across Industries

Episode Summary: As it turns out, survival of the fittest applies as much to algorithms as it does to amoebas, at least when we're talking about genetic algorithms. While we've explored other types of machine learning algorithms in business in past articles, genetic algorithms are newer territory. We recently interviewed Dr. Jay Perret, CTO of Aria Networks, a company that uses genetic algorithm-based technology for solving some of industry's toughest problems, from optimization of business networks to pinpointing genetic patterns that are correlated with specific diseases.

machine learning in pharma and medicine

7 Applications of Machine Learning in Pharma and Medicine

When it comes to effectiveness of machine learning, more data almost always yields better results—and the healthcare sector is sitting on a data goldmine. McKinsey estimates that big data and machine learning in pharma and medicine could generate a value of up to $100B annually, based on better decision-making, optimized innovation, improved efficiency of research/clinical trials, and new tool creation for physicians, consumers, insurers, and regulators.
Where does all this data come from? If we could look at labeled data streams, we might see research and development (R&D); physicians and clinics; patients; caregivers; etc. The array of (at present) disparate origins is part of the issue in synchronizing this information and using it to improve healthcare infrastructure and treatments. Hence, the present-day core issue at the intersection of machine learning and healthcare: finding ways to effectively collect and use lots of different types of data for better analysis, prevention, and treatment of individuals.
Burgeoning applications of ML in pharma and medicine are glimmers of a potential future in which synchronicity of data, analysis, and innovation are an everyday reality.
At Emerj, the AI Research and Advisory Company, we research how AI is impacting the pharmaceutical industry as part of our AI Opportunity Landscape service. Global pharma companies use AI Opportunity Landscapes to find out where AI fits at their company and which AI applications are driving value in the industry.
In this article, we use insights from our research to provide a breakdown of several of the pioneering applications of AI in pharma and areas for continued innovation.

NLG in business

Fundamentals of NLG in Business Intelligence – Yseop’s Matthieu Rauscher

Episode Summary: You might be aware that some of the articles online about sports or financial performance of companies are article written by machines; this machine learning-based technology is the burgeoning field of natural language generation (NLG), which aims to create written content as humans would—in context— but at greater speed and scale. Yseop is one such enterprise software company, whose product suite turns data into written insight, explanations, and narrative. In this episode we interview Yseop's Vice President Matthieu Rauscher, who talks about the fundamentals of NLG in business, and what conditions need to be in place in order to drive business objectives. Rauscher also addresses the difference between discover-oriented machine learning (ML) and production-level ML, and why different industries might be drawn to one over the other.

Machine Learning and Location Data Applications for Industry

Machine Learning and Location Data Applications for Industry

There is a certain level of stigma that exists around using machine learning and location data in business applications, understandably due to risks inherent in exploitation of individual privacy. But if we look under the hood of society's daily web of interactions, we see that the location information economy—from GPS to radio signal based-triangulation to geo-tagged images and beyond—is now almost ubiquitous, from the moment we track our morning commute to the end-of-day search for healthy and convenient take-out for dinner.

Machine Learning in Human Resources - Applications and Trends

Machine Learning in Human Resources – Applications and Trends

Human resources has been slower to come to the table with machine learning and artificial intelligence than other fields—marketing, communications, even health care. But the value of machine learning in human resources can now be measured, thanks to advances in algorithms that can predict employee attrition, for example, or deep learning neural networks that are edging toward more transparent reasoning in showing why a particular result or conclusion was made.

Business intelligence and analytics

Explore articles and reports related to artificial intelligence for business intelligence and analytics, including applications in forecasting, predictive analytics, text analysis, and more.